Prediction strategies without loss

نویسندگان

  • Mikhail Kapralov
  • Rina Panigrahy
چکیده

Consider a sequence of bits where we are trying to predict the next bit from the previous bits. Assume we are allowed to say ‘predict 0’ or ‘predict 1’, and our payoff is +1 if the prediction is correct and −1 otherwise. We will say that at each point in time the loss of an algorithm is the number of wrong predictions minus the number of right predictions so far. In this paper we are interested in algorithms that have essentially zero (expected) loss over any string at any point in time and yet have small regret with respect to always predicting 0 or always predicting 1. For a sequence of length T our algorithm has regret 14 T and loss 2 √ Te− T in expectation for all strings. We show that the tradeoff between loss and regret is optimal up to constant factors. Our techniques extend to the general setting of N experts, where the related problem of trading off regret to the best expert for regret to the ’special’ expert has been studied by Even-Dar et al. (COLT’07). We obtain essentially zero loss with respect to the special expert and optimal loss/regret tradeoff, improving upon the results of Even-Dar et al and settling the main question left open in their paper. The strong loss bounds of the algorithm have some surprising consequences. First, we obtain a parameter free algorithm for the experts problem that has optimal regret bounds with respect to k-shifting optima, i.e. bounds with respect to the optimum that is allowed to change arms multiple times. Moreover, for any window of size n the regret of our algorithm to any expert never exceeds O( √ n(logN + log T )), where N is the number of experts and T is the time horizon, while maintaining the essentially zero loss property.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competing with Markov prediction strategies

Assuming that the loss function is convex in the prediction, we construct a prediction strategy universal for the class of Markov prediction strategies, not necessarily continuous. Allowing randomization, we remove the requirement of convexity.

متن کامل

Leading Strategies in Competitive On-Line Prediction

We start from a simple asymptotic result for the problem of online regression with the quadratic loss function: the class of continuous limited-memory prediction strategies admits a “leading prediction strategy”, which not only asymptotically performs at least as well as any continuous limited-memory strategy but also satisfies the property that the excess loss of any continuous limited-memory ...

متن کامل

Horizon-Independent Optimal Prediction with Log-Loss in Exponential Families

We study online learning under logarithmic loss with regular parametric models. Hedayati and Bartlett (2012b) showed that a Bayesian prediction strategy with Jeffreys prior and sequential normalized maximum likelihood (SNML) coincide and are optimal if and only if the latter is exchangeable, and if and only if the optimal strategy can be calculated without knowing the time horizon in advance. T...

متن کامل

Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...

متن کامل

Sequential prediction with coded side information under logarithmic loss

We study the problem of sequential prediction with coded side information under logarithmic loss (log-loss). We show an operational equivalence between this setup and lossy compression with log-loss distortion. Using this insight, together with recent work on lossy compression with log-loss, we connect prediction strategies with distributions in a certain subset of the probability simplex. This...

متن کامل

Prediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks

Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011